3D Finite Element Meshing from Imaging Data.

نویسندگان

  • Yongjie Zhang
  • Chandrajit Bajaj
  • Bong-Soo Sohn
چکیده

This paper describes an algorithm to extract adaptive and quality 3D meshes directly from volumetric imaging data. The extracted tetrahedral and hexahedral meshes are extensively used in the Finite Element Method (FEM). A top-down octree subdivision coupled with the dual contouring method is used to rapidly extract adaptive 3D finite element meshes with correct topology from volumetric imaging data. The edge contraction and smoothing methods are used to improve the mesh quality. The main contribution is extending the dual contouring method to crack-free interval volume 3D meshing with feature sensitive adaptation. Compared to other tetrahedral extraction methods from imaging data, our method generates adaptive and quality 3D meshes without introducing any hanging nodes. The algorithm has been successfully applied to constructing the geometric model of a biomolecule in finite element calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 D finite element meshing from imaging data q

This paper describes an algorithm to extract adaptive and quality 3D meshes directly from volumetric imaging data. The extracted tetrahedral and hexahedral meshes are extensively used in the finite element method (FEM). A top-down octree subdivision coupled with a dual contouring method is used to rapidly extract adaptive 3D finite element meshes with correct topology from volumetric imaging da...

متن کامل

Adaptive Multiresolution and Quality 3D Meshing from Imaging Data

This paper presents an algorithm to extract adaptive and quality 3D meshes directly from volumetric imaging data primarily Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). The extracted tetrahedral and hexahedral meshes are extensively used in the Finite Element Method (FEM). Our comprehensive approach combines bilateral and anisotropic (feature specific) diffusion filtering, with...

متن کامل

A Proposal for a Dissertation on Tetrahedral/Hexahedral Finite Element Meshing from Volumetric Imaging Data

The proposed research for the Computational Engineering and Sciences (CES) option of the Computational and Applied Mathematics (CAM) Ph.D. program is in the area of tetrahedral/hexahedral finite element meshing from volumetric imaging data with defined boundaries. The proposed research work is to extract adaptive tetrahedral and hexahedral finite element meshes with guaranteed quality directly ...

متن کامل

A coupled finite element-boundary element method for modeling Diffusion equation in 3D multi-modality optical imaging

Three dimensional image reconstruction for multi-modality optical spectroscopy systems needs computationally efficient forward solvers with minimum meshing complexity, while allowing the flexibility to apply spatial constraints. Existing models based on the finite element method (FEM) require full 3D volume meshing to incorporate constraints related to anatomical structure via techniques such a...

متن کامل

3D Harmonic Mapping and Tetrahedral Meshing of Brain Imaging Data

We developed two techniques to address 3D volume parameterization and deformation mapping problems that arise in medical imaging [1]. The first algorithm finds a harmonic map from a 3-manifold to a 3D solid sphere and the second is a novel sphere carving algorithm which calculates the simplicial decomposition of a complex 3D image volume while preserving its surface topology. In this paper, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer methods in applied mechanics and engineering

دوره 194 48-49  شماره 

صفحات  -

تاریخ انتشار 2005